Milky Way vs Airglow Australis

Captured last week after sunset on a Chilean autumn night, an exceptional airglow floods this allsky view from Las Campanas Observatory. The airglow was so intense it diminished parts of the Milky Way as it arced horizon to horizon above the high Atacama desert. Originating at an altitude similar to aurorae, the luminous airglow is due to chemiluminescence, the production of light through chemical excitation. Commonly recorded in color by sensitive digital cameras, the airglow emission here is fiery in appearance. It is predominately from atmospheric oxygen atoms at extremely low densities and has often been present during southern hemisphere nights over the last few years. Like the Milky Way, on that dark night the strong airglow was very visible to the eye, but seen without color. Jupiter is brightest celestial beacon though, standing opposite the Sun and near the central bulge of the Milky Way rising above the eastern (top) horizon. The Large and Small Magellanic clouds both shine through the airglow to the lower left of the galactic plane, toward the southern horizon. via NASA https://ift.tt/2rL5eU4

Rotation of the Large Magellanic Cloud

This image is not blurry. It shows in clear detail that the largest satellite galaxy to our Milky Way, the Large Cloud of Magellan (LMC), rotates. First determined with Hubble, the rotation of the LMC is presented here with fine data from the Sun-orbiting Gaia satellite. Gaia measures the positions of stars so accurately that subsequent measurements can reveal slight proper motions of stars not previously detectable. The featured image shows, effectively, exaggerated star trails for millions of faint LMC stars. Inspection of the image also shows the center of the clockwise rotation: near the top of the LMC’s central bar. The LMC, prominent in southern skies, is a small spiral galaxy that has been distorted by encounters with the greater Milky Way Galaxy and the lesser Small Magellanic Cloud (SMC). via NASA https://ift.tt/2IFqgy2

Kepler s House in Linz

Four hundred years ago today (May 15, 1618) Johannes Kepler discovered the simple mathematical rule governing the orbits of the solar system’s planets, now recognized as Kepler’s Third Law of planetary motion. At that time he was living in this tall house on The Hofgasse, a narrow street near the castle and main square of the city of Linz, Austria, planet Earth. The conclusive identification of this residence (Hofgasse 7) as the location of the discovery of his third law is a recent discovery itself. Erich Meyer of the Astronomical Society of Linz was able to solve the historical mystery, based in part on descriptions of Kepler’s own observations of lunar eclipses. A key figure in the 17th century scientific revolution, Kepler supported Galileo’s discoveries and the Copernican system of planets orbiting the Sun instead of the Earth. He showed that planets move in ellipses around the Sun (Kepler’s First Law), that planets move proportionally faster in their orbits when they are nearer the Sun (Kepler’s Second Law), and that more distant planets take proportionally longer to orbit the Sun (Kepler’s Third Law). via NASA https://ift.tt/2rKgSi2

Sakurajima Volcano with Lightning

Why does a volcanic eruption sometimes create lightning? Pictured above, the Sakurajima volcano in southern Japan was caught erupting in 2013 January. Magma bubbles so hot they glowed shot away as liquid rock burst through the Earth’s surface from below. The featured image is particularly notable, however, for the lightning bolts caught near the volcano’s summit. Why lightning occurs even in common thunderstorms remains a topic of research, and the cause of volcanic lightning is even less clear. Surely, lightning bolts help quench areas of opposite but separated electric charges. Volcanic lightning episodes may be facilitated by charge-inducing collisions in volcanic dust. Lightning is usually occurring somewhere on Earth, typically over 40 times each second. via NASA https://ift.tt/2IeY6e5

NGC 1360: The Robin s Egg Nebula

This pretty cosmic cloud lies some 1,500 light-years away, it shape and color reminiscent of a blue robin’s egg. It spans about 3 light-years, nested securely within the boundaries of the southern constellation Fornax. Recognized as a planetary nebula it doesn’t represent a beginning though, but instead corresponds to a brief and final phase in the evolution of an aging star. In fact, visible in the telescopic image the central star of NGC 1360 is known to be a binary star system likely consisting of two evolved white dwarf stars, less massive but much hotter than the Sun. Their intense and otherwise invisible ultraviolet radiation has stripped away electrons from the atoms in the surrounding gaseous shroud. The predominant blue-green hue of NGC 1360 seen here is the strong emission produced as electrons recombine with doubly ionized oxygen atoms. via NASA https://ift.tt/2rA7lKt

Galaxies in the River

Large galaxies grow by eating small ones. Even our own galaxy practices galactic cannibalism, absorbing small galaxies that get too close and are captured by the Milky Way’s gravity. In fact, the practice is common in the universe and illustrated by this striking pair of interacting galaxies from the banks of the southern constellation Eridanus, The River. Located over 50 million light years away, the large, distorted spiral NGC 1532 is seen locked in a gravitational struggle with dwarf galaxy NGC 1531 (right of center), a struggle the smaller galaxy will eventually lose. Seen edge-on, spiral NGC 1532 spans about 100,000 light-years. Nicely detailed in this sharp image, the NGC 1532/1531 pair is thought to be similar to the well-studied system of face-on spiral and small companion known as M51. via NASA https://ift.tt/2G0R8Dl

The Red Rectangle Nebula from Hubble

How was the unusual Red Rectangle nebula created? At the nebula’s center is an aging binary star system that surely powers the nebula but does not, as yet, explain its colors. The unusual shape of the Red Rectangle is likely due to a thick dust torus which pinches the otherwise spherical outflow into tip-touching cone shapes. Because we view the torus edge-on, the boundary edges of the cone shapes seem to form an X. The distinct rungs suggest the outflow occurs in fits and starts. The unusual colors of the nebula are less well understood, however, and speculation holds that they are partly provided by hydrocarbon molecules that may actually be building blocks for organic life. The Red Rectangle nebula lies about 2,300 light years away towards the constellation of the Unicorn (Monoceros). The nebula is shown here in great detail as recently reprocessed image from Hubble Space Telescope. In a few million years, as one of the central stars becomes further depleted of nuclear fuel, the Red Rectangle nebula will likely bloom into a planetary nebula. via NASA https://ift.tt/2rvELus

The Unusual Boulder at Tychos Peak

Why is there a large boulder near the center of Tycho’s peak? Tycho crater on the Moon is one of the easiest features to see, visible even to the unaided eye (inset, lower right). But at the center of Tycho (inset, upper left) is a something unusual — a 120-meter boulder. This boulder was imaged at very high resolution at sunrise, over the past decade, by the Moon-circling Lunar Reconnaissance Orbiter (LRO). The leading origin hypothesis is that that the boulder was thrown during the tremendous collision that formed Tycho crater about 110 million years ago, and by chance came back down right near the center of the newly-formed central mountain. Over the next billion years meteor impacts and moonquakes should slowly degrade Tycho’s center, likely causing the central boulder to tumble 2000 meters down to the crater floor and disintegrate. via NASA https://ift.tt/2wfHQUp

Stickney Crater

Stickney Crater, the largest crater on the martian moon Phobos, is named for Chloe Angeline Stickney Hall, mathematician and wife of astronomer Asaph Hall. Asaph Hall discovered both the Red Planet’s moons in 1877. Over 9 kilometers across, Stickney is nearly half the diameter of Phobos itself, so large that the impact that blasted out the crater likely came close to shattering the tiny moon. This stunning, enhanced-color image of Stickney and surroundings was recorded by the HiRISE camera onboard the Mars Reconnaissance Orbiter as it passed within some six thousand kilometers of Phobos in March of 2008. Even though the surface gravity of asteroid-like Phobos is less than 1/1000th Earth’s gravity, streaks suggest loose material slid down inside the crater walls over time. Light bluish regions near the crater’s rim could indicate a relatively freshly exposed surface. The origin of the curious grooves along the surface is mysterious but may be related to the crater-forming impact. via NASA https://ift.tt/2rkUeNN

The View Toward M101

Big, beautiful spiral galaxy M101 is one of the last entries in Charles Messier’s famous catalog, but definitely not one of the least. About 170,000 light-years across, this galaxy is enormous, almost twice the size of our own Milky Way galaxy. M101 was also one of the original spiral nebulae observed by Lord Rosse’s large 19th century telescope, the Leviathan of Parsontown. M101 shares this modern telescopic field of view with spiky foreground stars within the Milky Way and a companion dwarf galaxy NGC 5474 (lower right). The colors of the Milky Way stars can also be found in the starlight from the large island universe. Its core is dominated by light from cool yellowish stars. Along its grand design spiral arms are the blue colors of hotter, young stars mixed with obscuring dust lanes and pinkish star forming regions. Also known as the Pinwheel Galaxy, M101 lies within the boundaries of the northern constellation Ursa Major, about 23 million light-years away. NGC 5474 has likely been distorted by its past gravitational interactions with the dominant M101. via NASA https://ift.tt/2jqsjHW