Milky Way vs Airglow Australis

Captured last week after sunset on a Chilean autumn night, an exceptional airglow floods this allsky view from Las Campanas Observatory. The airglow was so intense it diminished parts of the Milky Way as it arced horizon to horizon above the high Atacama desert. Originating at an altitude similar to aurorae, the luminous airglow is due to chemiluminescence, the production of light through chemical excitation. Commonly recorded in color by sensitive digital cameras, the airglow emission here is fiery in appearance. It is predominately from atmospheric oxygen atoms at extremely low densities and has often been present during southern hemisphere nights over the last few years. Like the Milky Way, on that dark night the strong airglow was very visible to the eye, but seen without color. Jupiter is brightest celestial beacon though, standing opposite the Sun and near the central bulge of the Milky Way rising above the eastern (top) horizon. The Large and Small Magellanic clouds both shine through the airglow to the lower left of the galactic plane, toward the southern horizon. via NASA

Blue Waters

This image of the southern Greenland town of Narsaq was taken during an Operation IceBridge flight on Apr. 26, 2018. via NASA

Rotation of the Large Magellanic Cloud

This image is not blurry. It shows in clear detail that the largest satellite galaxy to our Milky Way, the Large Cloud of Magellan (LMC), rotates. First determined with Hubble, the rotation of the LMC is presented here with fine data from the Sun-orbiting Gaia satellite. Gaia measures the positions of stars so accurately that subsequent measurements can reveal slight proper motions of stars not previously detectable. The featured image shows, effectively, exaggerated star trails for millions of faint LMC stars. Inspection of the image also shows the center of the clockwise rotation: near the top of the LMC’s central bar. The LMC, prominent in southern skies, is a small spiral galaxy that has been distorted by encounters with the greater Milky Way Galaxy and the lesser Small Magellanic Cloud (SMC). via NASA

A Sunny Day

Each and every day NASA’s Solar Dynamics Observatory (SDO) observes our Sun and relays observational data to scientists on Earth. via NASA

Kepler s House in Linz

Four hundred years ago today (May 15, 1618) Johannes Kepler discovered the simple mathematical rule governing the orbits of the solar system’s planets, now recognized as Kepler’s Third Law of planetary motion. At that time he was living in this tall house on The Hofgasse, a narrow street near the castle and main square of the city of Linz, Austria, planet Earth. The conclusive identification of this residence (Hofgasse 7) as the location of the discovery of his third law is a recent discovery itself. Erich Meyer of the Astronomical Society of Linz was able to solve the historical mystery, based in part on descriptions of Kepler’s own observations of lunar eclipses. A key figure in the 17th century scientific revolution, Kepler supported Galileo’s discoveries and the Copernican system of planets orbiting the Sun instead of the Earth. He showed that planets move in ellipses around the Sun (Kepler’s First Law), that planets move proportionally faster in their orbits when they are nearer the Sun (Kepler’s Second Law), and that more distant planets take proportionally longer to orbit the Sun (Kepler’s Third Law). via NASA

Europa by the Numbers

Galileo Galilei discovered Jupiter’s moon Europa in 1610. More than four centuries later, astronomers are still making discoveries about its icy surface. via NASA